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There are two long established methods for representing the delocalized portion of the
pi-electron energy of conjugated molecules in a simple local fashion. One, introduced by Hess
and Schaad, can be used to provide a very accurate estimate of the energy of acyclic polyenes.
Another, introduced originally by Herndon, has been successfully applied to the energy of
aromatic ring systems. Both methods can be shown to be forms of cluster expansions, in which
the energy of a molecule is expressed exactly as a sum of (successively smaller) contributions
from successively larger molecular fragments. As such, it should in principle be possible to
combine the methods to provide a consistent description of molecules of almost any structure.
However past attempts to do so have yielded physically unreasonable results. It is shown that
the key missing ingredient in these attempts is a failure to account for bond stretching and
compression. When the energy changes associated with bond length changes are accounted
for properly, the combined cluster expansion is quite successful in accounting for molecular
pi electron energies in a very compact form.
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1. Introduction

In this paper we propose a resolution of an inconsistency between two standard
methods for treating the energetics of pi-electron systems. The methods in question are
the Hess and Schaad type method for treating effects of conjugation and the quantitative
resonance/conjugated circuits method for treating aromaticity. Both share a common
graph-theoretical justification, and thus should provide a consistent picture of pi-electron
energies, but past attempts to combine them have been unsuccessful. Here we argue
that the key missing ingredient is a proper accounting of energetic effects due to bond
length changes. When these are included in the two methods, consistent and physically
reasonable results are obtained.

Hess and Schaad [1] were the first to note that when pi-electron energies are evalu-
ated using the Huckel Molecular Orbital (HMO) method there is a great deal of regularity
in the results for conjugated acyclic hydrocarbons. To an excellent approximation, the
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pi energy of any such molecule can be written as a sum of contributions from each bond,
where the energy of a bond depends only on its immediate surroundings. In the original
Hess and Schaad method bonds were classified as formally single or double, and by the
number of other carbons bonded to each end. This results in nine different bond types,
but one appears only in ethylene and there are two linear dependence relations among the
other eight, resulting in an effective six-parameter fitting scheme. Jiang et al. [2] later
proposed a similar method in which the distinction between single and double bonds is
ignored, resulting in six bond types, one of which appears only in ethylene. It has been
shown [3] that both of these schemes can be expressed in terms of a cluster expansion,
which will be utilized below, and that the Jiang, Tang, and Hoffmann method differs
from the Hess and Schaad scheme only by assuming zero contributions from three terms
whose values are, in fact, very small.

The other widely applied, graphically based, method for treating pi-electron ener-
getics is the Quantitative Resonance Theory (QRT) of Herndon [4], which gives the aro-
matic stabilization energy of aromatic (and antiaromatic) hydrocarbons directly in terms
of contributions from conjugated rings. This method has been reformulated by Randic
and Trinajstic in a computationally convenient form under the name of conjugated cir-
cuit (CC) theory [5]. In this version, the aromatic stabilization energy is given as a sum
of contributions from each conjugated cycle appearing in any of the Kekule structures of
the molecule, where a conjugated cycle is a path of alternating single and double bonds
around a ring of any size. For aromatic benzenoid hydrocarbons contributions have been
determined for cycles of size 6, 10, and 14, and all are stabilizing as expected from
the Huckel (4n + 2) rule, but of diminishing strength as the cycle size increases. Con-
jugated circuit theory can also be expressed formally as a cluster expansion, and thus
should combine nicely with the Hess and Schaad methods to describe effects due to both
conjugation and aromaticty, but as discussed below, this has not proved to be the case.

There is, of course, a reason to wish to combine the two methods. It has been
understood for a long time that one cannot achieve a reasonable energetic measure of
“aromaticity” simply by comparing the pi energy of aromatic molecules to that of iso-
lated double bonds. Conjugation results in significant energy changes even in noncyclic
molecules which are certainly not aromatic. In an aromatic ring the double bonds are
conjugated as well as delocalized, and one would like to separate the effects of conju-
gation from those of aromaticity. The Hess and Shaad method, or any of its variants,
gives a straightforward way of doing this. One subtracts from the total pi energy the
contributions of all acyclic clusters, even those contained within rings, and then iden-
tifies the difference as the “aromatic” stabilization energy. These energies should then
decompose into ring contributions similar to the empirical conjugated circuit values. It
is not difficult to carry this decomposition through using total pi energies computed by
the HMO method, but the results bear little resemblance to the conjugated circuit values.
They show such unphysical results as values which increase with circuit size, or are even
of the wrong sign [6]. Why do these methods not match together more smoothly?

One possibility is that the HMO method, which is certainly very approximate, does
not give an adequate account of conjugation, aromaticity, or both. To test this possibil-
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ity, the Hess and Schaad decomposition of pi-electron energy was carried out for the
Hubbard model [7]. The Hubbard model [8] is a two parameter effective pi electron
Hamiltonian which combines an electron hopping term of strength t with an on-site
electron repulsion term of strength U . When U is equal to zero it reduces exactly to the
Huckel model, but as U increases it spans the whole range from independent particle
to highly correlated electron–electron interactions. The U/t → ∞ limit corresponds
to the valence bond model in which only covalent configurations contribute to the wave
function. In [7] it is shown that the cluster expansion for acyclic energy contributions
converges rapidly at all U/t , in a qualitatively similar manner to that for the Huckel
model. However, ring contributions calculated from theses cluster values and computed
total Hubbard energies show the same pathologies as those found from HMO theory [6].
Thus inadequacies of the Huckel model do not appear to be the source of the difficulty.

Examination of the original QRT/CC papers reveals one important difference be-
tween the original parameterization of these methods and attempts to extract them from
total pi energies. The original papers used aromatic stabilization energies computed
by Dewar and DeLlano [9] using a version of MNDO theory, which includes sigma as
well as pi electrons. All molecules were taken at their minimum energy geometry as
computed by this method. Energetic effects due to compression of sigma bonds as pi
character varies were thus included from the beginning. Accordingly, we have set out to
examine whether coupling of pi energies to bond lengths, with accompanying changes
in sigma bond energy, can resolve the discrepancy between Hess and Schaad and conju-
gated circuit theories. The conclusion below is that it can.

2. Procedure

The analysis is most conveniently carried out using the cluster expansion formal-
ism. A cluster expansion provides a formally exact way of representing a property of
a molecule, represented by a graph, as a sum of contributions from subgraphs of the
molecular graph. Since the molecule itself is its own largest subgraph, the expansion
must necessarily be exact if carried to completion, but often only small subgraphs are
found to make significant contributions. We adopt here the cluster expansion introduced
in [3,7], in which conjugated hydrocarbons are represented by labeled, hydrogen deleted
graphs, with the carbon atoms at the vertices and with the labeling identifying each edge
(carbon–carbon bond) as formally double or single. We limit the expansion to connected
subgraphs which support a Kekule structure, and order them by diameter, where the di-
ameter d of a graph is the smallest number of edges which must be traversed to connect
two maximally separated vertices. Then all of the Hess and Schaad type methods for
acyclic hydrocarbons can be derived from the cluster expansion truncated at d = 5 [3]
which involves only the seven subgraphs shown in figure 1.

For benzenoid aromatics, we also limit the expansion of the acyclic portion of the
energy to isometric subgraphs. An isometric subgraph is one which contains at least
one shortest path from the parent between any two vertices of the subgraph. Of course,
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Figure 1. Acyclic molecules and assigned sequence numbers with diameter d � 5.

the expansion must be carried out for each Kekule structure and averaged for molecules
in which there is more than one way to represent the formal placement of single and
double bonds. If we exclude “mixed” subgraphs with both cyclic and acyclic portions
(the validity of this omission will be checked), we are left with the subgraphs shown
in figure 2 to account for aromatic contributions to the energy. They bear an obvious
correspondence to conjugated circuits. Truncation at d = 5 includes just contributions
from conjugated 6- and 10-circuits as in Herndon’s original work [4]. Given the strength
of aromatic interactions, it is not surprising that there is good evidence that contributions
from 14-circuits (d = 7) are not negligible. However, this analysis agrees with [10] that
there really should be three distinct 14-circuit contributions while empirically these are
generally taken to be equal [5].

A major advantage of formulating these methods as cluster expansions is that clus-
ter expansions can be uniquely solved by inversion if the value of the property under
investigation is known for the smallest molecule containing each subgraph [11]. For ex-
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Figure 2. Ring molecules and assigned sequence numbers with diameter d � 7.

ample, the pi energy of ethylene provides directly the contribution of the first subgraph
in figure 1. Butadiene contains the first subgraph twice, so the difference between its
energy and twice the contribution of the first subgraph gives the energy contribution of
the second subgraph. This process can be continued to derive energy contributions for
all remaining subgraphs from calculated energies for the 12 molecules whose graphs are
depicted in figures 1 and 2.

We now introduce a model for the energy which includes both the interactions
among the pi electrons and the coupling between pi and sigma energies due to bond
length changes. The total molecular energy is taken as a sum of a sigma and a pi compo-
nent. The sigma component represents each bond as a spring with an equilibrium energy
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(which need not be known), an equilibrium length, and a quadratic force constant for
distortions away from equilibrium. The pi energy here will be calculated from HMO
theory, although any other convenient method could be used. The coupling between the
two is introduced by assuming a linear bond length–bond order relation, so that each
carbon–carbon sigma bond compresses in proportion to the pi bond order placed upon
it during the pi energy calculation. We also assume a linear dependence of the Huckel
parameter β on bond length, so the calculations must be carried out self consistently
until the optimum geometry is found.

The model may be summarized via the equations

E= 2
∑

βrsprs + 1

2

∑
K(Rrs − Re)

2 + constant, (1)

βrs= β0
(
1+ δ(Rrs − R0)

)
. (2)

The two sums in equation (1) represent the bond length dependent pi and sigma con-
tributions to the energy while the constant, which will be ignored, includes the on-site
(α) portion of the Huckel energy and the equilibrium single bond energies which do not
vary and which do not effect the cluster expansion. Rrs, βrs, and prs are respectively the
length, Huckel β value, and pi bond order for bond rs, and the sums in equation (1)
extend over all nearest neighbor (bonded) pairs of carbon atoms. The parameter R0 in
equation (2), which is an arbitrary reference point, is taken as 1.399 Å. The model thus
depends on four parameters, one of which (β0) simply determines the energy scale (re-
sults will be given in units of β0), and three (K,Re, δ) which must be determined from
experimental data.

Two of the free parameters in the model can be fixed by comparison to the empirical
bond length–bond order relation. There are two relevant molecules whose bond order is
completely determined by symmetry (within the HMO approximation), namely ethylene
with p = 1 and benzene with p = 2/3. If one fits these bond orders via a straight line
against the experimental bond lengths of these molecules (1.339 Å and 1.399 Å [12]),
the resulting relation is

R = 1.519 − 0.180p. (3)

This implies a length for a pure single bond between sp2 hybridized carbon atoms of
1.519 Å, in good agreement with other estimates [9]. We note in passing that equa-
tion (3) also predicts the bond length of another “molecule”, graphite, whose bond order
of 0.52486. . . [13,14] is fixed by symmetry, in excellent agreement with the experimental
value of 1.421 Å [12]. If we now take equation (1) for the energy of ethylene or benzene
and differentiate with respect to bond length we find the condition for the location of the
energy minimum to be

dE

dR
= 2β0δp +K(Rmin − Re) = 0 (4)

or

Rmin = Re − 2β0δp

K
. (5)
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Table 1
Total pi energy in units of |β0| for molecules in figures 1–2.

Molecule Fixed β Variable β

1 −2.000000 −2.454800
2 −4.472136 −5.013978
3 −6.898979 −7.573587
4 −6.987918 −7.576210
5 −9.331737 −10.132863
6 −9.445871 −10.140111
7 −11.924777 −12.709468
8 −8.000000 −8.000000
9 −13.683239 −13.418282

10 −19.313709 −18.766126
11 −19.448251 −18.904900
12 −22.505459 −21.668178

Comparison of equation (5) with equation (3) thus gives Re = 1.519 Å and 2β0δ/K =
0.180 Å.

There are several ways that the remaining free parameter could be fixed, but in
this work we simply adjusted δ to give the experimentally observed difference between
the double and single bond lengths in butadiene (0.118 Å [12]). Thus the experimental
content of the model is fixed by the bond lengths of the isolated double bond in ethylene,
the aromatic double bond in benzene, and the conjugated bonds in butadiene – just the
effects which we are trying to model. If we assign β0 a standard aromatic value of

−2.5 eV, this yields the final values Re = 1.519 Å, K = 105.3 eV/(Å)
2
, and δ =

−3.79 (Å)−1.
The computational procedure for use of the model is to guess bond lengths, com-

pute β values from equation (2), and then to carry out the HMO calculation to generate
bond orders. These are used in equation (3) to revise the bond lengths, and the procedure
is repeated until the output bond lengths agree with the input to 1× 10−4 Å. Finally, the
first term of equation (1) is used to evaluate the pi energy in the presence of sigma bond
compression. In table 1 we give the total pi energies, in units of β0, for the molecules in
figures 1 and 2, with and without the adjustment for changing bond length.

3. Results

We first consider the effect of the bond length adjustment on the cluster expan-
sion for the energy of acyclics. Table 2 gives the cluster contribution from fragments
generated from the first seven molecules in table 1 via the inversion procedure of refer-
ences [3,7]. It is clear that bond length variations make the cluster expansion even more
rapidly convergent, almost to the point that clusters beyond the first two make negligible
contributions to the energy. This result makes good sense since the effect of the bond
length adjustment is to strengthen formal double bonds and weaken formal single bonds.
In the limit that single bonds become infinitely weak, the molecule would be described
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Table 2
Cluster contributions in units of |β0| for acylic fragments

shown in figure 1.

Cluster Fixed β Variable β

1 −2.0000 −2.4548
2 −0.4721 −0.1044
3 0.0453 −0.0004
4 −0.0436 −0.0031
5 −0.0059 0.0003
6 0.0125 −0.0012
7 −0.0024 0.0001

exactly as a collection of noninteracting double bonds, and the cluster expansion would
converge after the first term. The other change which stands out is the change of clus-
ter 3, which represents a branch in the carbon chain, from a significantly destabilizing
contribution for the uniform beta case to a very small but stabilizing contribution for the
bond adjusted expansion. This result appears to be somewhat coincidental because the
form of the cluster expansion forces the difference between the contribution of cluster 3
and that of cluster 4 to be equal to the calculated energy difference between molecule 3
and molecule 4. Since bond adjustment makes the energy less sensitive to structural
variations, these two cluster values must move closer together. The fact that the cluster 3
value has moved through zero is probably without great significance.

With the values of the acyclic cluster contributions in hand, we can now extract
effective conjugated circuit contributions from the computed energies of molecules 8–12
by expressing the energy of each as the average over Kekule structures of the sum of
contributions from all isometric acyclic clusters and all conjugated cycles. The formal
expressions are

E8 = 3ε1 + 3ε2 + R1,

E9 = 5ε1 + 6ε2 + 2ε3 + 2ε4 + 4

3R1
+ 2

3R2
,

E10 = 7ε1 + 9ε2 + 4ε3 + 4ε4 + 3

2R1
+ R2 + 1

2R′3
,

E11 = 7ε1 + 9ε2 + 4ε3 + 22

5ε4
+ 4

5ε5
+ 2

5ε6
+ 2R1 + 4

5R2
+ 2

5R′′3
,

E12 = 8ε1 + 11ε2 + 16

3ε3
+ 7ε4 + 2

3ε5
+ 2

3ε6
+ 2R1 + 4

3R2
+ 2

3R′′3
+ 1

3R′′′3

,

where the εi’s refer to the contributions of clusters 1–7 and R1 refers to the contribu-
tion of a conjugated 6-cycle, R2 is that of a conjugated 10-cycle, and R′3, R′′3 , and R′′′3
refer to conjugated 14-cycles around an anthracene, phenanthrene, or pyrene moiety,
respectively. Inverting these equations to solve for the R’s gives the results with and
without bond length adjustment which are shown in columns two and three of table 3.
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Table 3
Ring contributions in units of |β0|.

Ring Fixed β, d = 5 Variable β, d = 5 Variable β, d = 3

R1 −0.584 −0.322 −0.322
R2 −0.113 −0.122 −0.132
R′3 −0.165 −0.048 −0.055
R′′3 0.174 −0.061 −0.078
R′′′3 −0.149 −0.029 −0.025

The uniform bond results are clearly unreasonable, but the bond adjusted results are well
behaved. All 4n + 2 membered rings make stabilizing contributions, as expected, but
of diminishing magnitude as the size of the ring increases. If we choose the standard
value −2.50 eV for the energy scale parameter β0 and average the three types of R3,
we can get conjugated circuit parameters which can be compared directly to the sets
found in the literature, which are highly successful in correlating many chemical prop-
erties of benzenoid aromatics [4,5]. We obtain R1 = −0.805 eV, R2 = −0.304 eV,
R3 = −0.115 eV compared to Herndon’s values of R1 = −0.841 eV, R2 = −0.336 eV,
R3 not included [4], and Randic’s values of R1 = −0.869 eV, R2 = −0.246 eV, and
R3 = −0.100 eV [5]. Given the limitations of Huckel theory, this level of agreement
must be considered quite satisfactory.

There is another requirement which we expect of a successful description of
pi-electron energetics besides reasonable values for the R parameters, namely that there
should be negligible residual energy contributions from “mixed” clusters containing both
acyclic and ring portions. We examine this issue in table 4. The first two molecules,
o-xylylene and p-xylylene, contain 6-membered rings but are not aromatic because they
have only a single Kekule structure in which double bonds are not conjugated around
the ring. The remaining molecules have aromatic rings and conjugated chains which are
formally noninteracting. We see again that the cluster and ring parameters derived with
fixed beta values do not fully account for the fixed-beta pi energies of the molecules,
but those derived from the bond-adjusted calculations account almost completely for the
bond-adjusted pi energies of the molecules.

In fact, the cluster expansion for the acyclic clusters with bond adjustment is so
rapidly convergent that an even simpler representation of the pi energy is not unreason-
able. If we truncate the expansion for the acyclics at d = 3 instead of d = 5, only two
acyclic clusters remain and these are present in equal numbers in all of the Kekule struc-
tures of an aromatic. The number of occurrences of cluster 1 is just equal to the number
of double bonds and the number of occurrences of cluster 2 is equal to the number of
single bonds. This truncation has no effect on the computed value of R1 but introduces
small changes in the values of the other R parameters, shown in the last column of
table 3, but without seriously degrading the agreement with the standard literature pa-
rameter sets. These parameters are very easy to use and, as shown in the last column
of table 4, also give a reasonable description of the “mixed” molecules, although in all
cases the longer expansion is more accurate.
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Table 4
Residual contributions to the pi-electron energy in units of |β0|.

Residual Residual Residual
fixed β variable β variable β

Molecule Cluster formula d = 5 d = 5 d = 3

o-xylylene 4ε1 + 4ε2 + 2ε3 −0.156 −0.011 −0.012
p-xylylene 4ε1 + 4ε2 + 2ε4 0.051 −0.007 −0.014
biphenyl 6ε1 + 7ε2 + 2ε3 0.091 −0.011 −0.018

+ 2ε4 + ε5 + 2R1
stilbene 7ε1 + 8ε2 + 2ε3 0.107 −0.015 −0.025

+ 3ε4 + 2R1
styrene 4ε1 + 4ε2 + ε3 0.046 −0.005 −0.009

+ ε4 + R1
o-divinylbenzene 5ε1 + 5ε2 + 2ε3 0.089 −0.009 −0.019

+ 5/2ε4 + 1/2ε5
+ ε6 + R1

m-divinylbenzene 5ε1 + 5ε2 + 2ε3 0.094 −0.010 −0.017
+ 2ε4 + R1

p-divinylbenzene 5ε1 + 5ε2 + 2ε3 0.084 −0.012 −0.019
+ 2ε4 + R1

4. Conclusion

We find that the contributions of pi electrons to the electronic energy of conjugated
molecules (at least in the absence of heteroatoms) can be accounted for in a simple
and consistent way. When expressed as a graphical cluster expansion, the needed terms
reproduce both the Hess and Schaad approach to conjugated acyclic chain molecules
and the conjugated circuit approach to molecules composed of benzenoid aromatic rings,
showing that these methods share a common underlying basis. However, this consistency
can only be achieved when the pi energy is calculated by a method which takes proper
account of the geometry of the molecules. In this work pi energies were evaluated by the
HMO method, and the coupling to geometrical structure was introduced approximately
through an empirical bond length/bond order relationship, but it is expected that the same
conclusion will be reached for more sophisticated methods of computing the pi electron
energy and its dependence on molecular structure. Calculations along these lines are in
progress.

The results of the present work show that allowing the pi energy to adjust to the
geometry strongly increases the rate of convergence of the cluster expansion of the en-
ergy, to the point that it is reasonable to describe the energy of acyclics by just two terms:
a contribution from a double bond and a correction for conjugation of a pair of double
bonds. Benzenoid aromatic hydrocarbons, in turn, can be described by contributions
from conjugated 6-membered cycles, conjugated 10-membered cycles, and conjugated
14-membered cycles, but the contributions of the 14-cycles appear to vary somewhat
with the shape of the cycle.
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